
Route Lookup Algorithms Using the Novel
Idea of Coded Prefix Trees

Mohammad Behdadfar

Engineering Department of IRIB University
Tehran, Iran

Behdadfar@iribu.ac.ir

Hossein Saidi
Department of Electrical & Computer Engineering

Isfahan University of Technology
Isfahan, Iran

hsaidi@cc.iut.ac.ir

Masoud-Reza Hashemi
 Department of Electrical & Computer Engineering

Isfahan University of Technology
 Isfahan, Iran

hashemim@cc.iut.ac.ir

Received: February 23, 2012- Accepted: July 4, 2012

Abstract— This paper introduces a new prefix matching algorithm called “Coded Prefix Search” and its improved
version called “Scalar Prefix Search” using a coding concept for prefixes which can be implemented on a variety of
trees especially limited height balanced trees for both IPv4 and IPv6 prefixes. Using this concept, each prefix is
treated as a number. The main advantage of the proposed algorithms compared to Trie-based solutions is that the
number of node accesses does not depend on IP address length in both search and update procedures. Therefore,
applying this concept to balanced trees, causes the search and update node access complexities to be O(log n) where n
is the number of prefixes. Also, compared to the existing range-based solutions, it does not need to store both end
points of a prefix or to store ranges. Finally, compared to similar tree based solutions; it exhibits good storage
requirements while it supports faster incremental updates. These properties make the algorithm capable of potential
hardware implementation.

Keywords- Coded Prefix; Scalar Prefix; Route Lookup; Longest Matching Prefix

I. INTRODUCTION
Longest Prefix Matching or LPM is the problem

of finding the longest prefix of a w-bit address d,
among a set of binary prefixes with the maximum
length of w stored in a router table. A
straightforward algorithm to find the Longest
Matching Prefix or LMP of a given address is linear
search [1]. Considering n as the number of prefixes,
the complexity of this algorithm will be O(n) which
is not acceptable for large databases.

Using a Radix tree or Trie [1] in which each tree
edge corresponds to one bit, the search and update
complexities become O(w) which is better than
linear search where w is 32 for IPv4 and 128 for
IPv6. However, the search and update complexities
of Trie are not acceptable for high speed switches.
Some other versions of Trie such as Patricia [2],
LC-Trie [3], Prefix Expansion [4], LPFST [5]
or [6], [7] have also been introduced to improve
search performance. But most of them suffer from
the similar drawback and also do not support
incremental updates or would not be extendable to

IPv6. Some hardware schemes have also been
introduced to improve the performance of Trie
based structures using pipelining [8], searching
different lengths on parallel RAMs [9], using
FPGA [11] or parallel RAMs and FPGA [10], using
graphics processor unit (GPU) [12] and compact
clustered tries [13]. However, the main drawback of
the Trie-based searches still exists in these newly
introduced methods.

To reduce the dependency of prefix search
algorithms to the address length, some "range
based" algorithms were introduced. In these
algorithms, two end points are defined for each
prefix and stored in a binary search tree. By
defining a range for each prefix, the search in the
tree may be done by finding the most specific range
corresponding to an address [14]. The node access
complexity of this structure is independent from w
for the search procedure. The range based prefix
search algorithms often need long time for the
prefix update procedures even for some of those
which used balanced trees to store the prefix end
points [15]. To support the fast search and also
incremental updates, some range-based algorithms
were introduced by the authors of [16] among
which PIBT has the best search performance [16].
Since PIBT stores prefix end points in a B-tree, its
search and update complexity is O(log(n)). It should
be mentioned that two additional w-bit vectors for
each prefix endpoint are applied in PIBT structure.
Therefore, since each prefix has two end points,
about 6 vectors might be stored in the tree instead of
the prefix itself. This leads to a large storage
requirment. One of the well known range-based
lookup algorithms with better average results than
PIBT is BTLPT [17]. This algorithm uses two
structures: a B-tree for disjoint prefixes and an
LPFST for the remaining prefixes. However, the
complexity of BTLPT still depends on w, based on
the Trie-based behavior of LPFST.

Some other range based methods like using
segment trees [18] or [19] have also been
introduced, however they still suffer from the main
drawback of long prefix update procedures.

“Prefix Trees” and “M-way Prefix Trees” are
other algorithms proposed in [20], and their main
idea is to introduce a comparison rule for storing
and searching the prefixes. The main drawbacks of
these algorithms are the worst case tree height
which is O(w) like Trie-based solutions and the long
update procedures.

It should be mentioned that other hardware
solutions like using Hash [21], TCAM [22] or
Bloom filters [23] have been used as well as the
above methods since introduction of CIDR.
However, most of them suffer from the problem of
not supporting incremental updates.

In [24], we introduced a new algorithm called
“Coded Prefix B-tree” or CP-BT. This scheme
considers a coding concept for prefixes to compare
them like numbers with =, < and >. Therefore using

 this concept, unlike range based algorithms, it is
not required to store both prefix end points in the
tree. The main idea of CP-BT is extended in this paper
by introducing Coded Prefix Trees in which the tree
height does not depend on IP address length. The idea
of Coded Prefix Trees can be applied to many types of
trees especially balanced trees like B-tree, RB-tree [1]
and AVL-tree [1]. It is also extended to another version
of the algorithm called “Scalar Prefix Search” which
was partially presented in [25], [26] and [27]. In this
paper, the results of both versions are compared with
some competitive well-known algorithms like PIBT,
BTLPT and LPFST for both IPV4 and IPV6 prefix
databases.

Based on the above discussions, the main
weakness of Trie-based algorithms is their dependency
of number of Trie node accesses to IP address length
for search and update procedures. Also, other
important weakness of range based algorithms is their
inability of performing incremental updates and high
storage requirements. The novelty of the idea which is
introduced in this paper is covering the followings:

- The number of node accesses for search and
update procedures does not depend on the IP
address length.

- In comparison with most of the range based
solutions, this scheme fully supports incremental
updates in a single tree downward pass.

- The proposed schemes are implementable on most
of the tree data structures among which balanced
trees are selected in this paper.

- Coded Prefix Search is the first scheme that
introduces a coding concept for comparing the
prefixes like numbers without considering two
end points per prefix. Actually, this coding
concept plays the main role in most parts of the
algorithms.

The rest of the paper is organized as follows: The
main idea of Coded Prefixes is reviewed in section 2.
Section 3 describes the Coded Prefix Search
algorithm. Scalar Prefix Search, the improved version
of Coded Prefix Search is introduced in section 4.
Application of both versions to balanced trees is
discussed in section 5. Section 6 presents the
complexity analysis, the implementation and
simulation results of both versions of the algorithm
compared to some well-known competitive solutions.
Section 7 concludes the paper. The Appendix
corresponds to lemma proofs.

II. CODED PREFIXES: THE MAIN IDEA
We propose a coding ‘concept’ in which unlike the

range-based algorithms, prefixes are treated as
numbers. Consider a k-bit prefix p. Since the IP
address is considered to be w bits, the number of blank
places of p is 'w-k'. For comparison, each bit of p
would be encoded using a 2-bit value as follows: for
each bit '1', the 2-bit '10'; for each bit '0', the two-bit
'01' and for each blank place, the 2-bit '00' is used. For
example, considering w=5, the prefix 01* will be
encoded to 0110000000.

Based on this definition, the prefixes can be
compared like numbers using “=”, “<” and “>”. As an
example, we will have:

00001* < 0001* < 001* < 0010* < 010*< 100*

This definition leads us to the following lemma. .

Lemma1- consider two prefixes p, q. If p is a prefix of
q, then p q.

Proof- It is given in the appendix

Please note that we will use the ‘concept’ of the
mentioned coding to only ‘describe’ the algorithm, but
‘not to store the prefixes’. The prefixes are stored in
the memory as a usual ‘w’ bit vector with one
additional vector which will be introduced in the next
section.

III. CODED PREFIX SEARCH: THE IDEA
The method of section 2 can be applied to many

types of trees. Although it is not efficient to apply this
method to Binary Search Tree, just to simply describe
the ‘Coded Prefix Search’ procedures, we will apply it
to Binary Search Tree and then will extend it to other
trees. After applying the method to this tree, it is
named “Coded Prefix Binary Search Tree” or CP-
BST. First let’s define some notations:

 len(p) shows the length of a prefix p.

 p(i) shows ith bit of prefix p.

 For each prefix p with len(p)=k, and k<w, we add
w-k zero pads and we call it ‘key’ and show it as
key(p) or keyp which will be inserted into the tree
instead of the original prefix. ‘key(p)’ will be
defined as:

key(p)="p(0)p(1)p(2)…p(k-1)000…0"

 e.g. if w=4 and p=101*, then:
 key(p)="1010".

 The notation p q shows that p is a prefix of q.

 The notation p! q indicates that p is not a prefix
of q.

 If p! q and q! p, then p and q are called
"disjoint" prefixes.

 A prefix of p with the length of k is shown by
prefk(p).

 The Longest Matching Prefix of a string “S” is
denoted as LMP(S).

 For a key "r", a w bit "Match Vector" is defined
and abbreviated with "r.mv".The ith bit of r.mv is
called r.mv(i). If r.mv(i)=1, it means that there
exists a prefix q of r with the length of i+1 or
len(q)=i+1 or q=prefi+1(r) in the database. Please
note that the Match Vector bit numbers indexing
starts from "0".

 The length of the path from the root of the tree to
node x is called height(x), e.g. height(root) is zero,
and the height of each child of the root is "one",
and so on.

 The longest prefix of each key derived from its
match vector is called the ‘Max-length Prefix’ of
that key and is shown by MP(key). The largest i
such that key.mv(i)=1, shows that the length of
MP(key) is i+1.

Using these definitions, prefixes can be inserted
into any search tree such as Binary Search Tree (BST).
Although each prefix will be stored in form of two
vectors called "Match Vector" and "key", the
procedure may be simply mentioned as inserting the
prefix instead of storing the key or Match Vector.

The insert and search procedures for CP-BST are
explained in the following sections. The delete
procedure is removed due to space limitation.
However, detailed delete procedure of CP-BT is
included in [24].

A. Insertion
Before describing the insert procedure, the

following lemma should be stated:

Lemma 2- Consider a set P of prefixes which are
inserted into a binary search tree with an arbitrary
order and based on the comparison definition of
section II. Consider d as an input IP address and
assume that the objective is “to search d” in the tree. If
pi is a member of P and also pi d, then at least one
key q will be found in the search path of d such that
pi q.

Proof- It is given in the appendix.

This lemma states the main idea of the insertion
procedure. Since q is found in the search path and
pi q, if the existence of prefixes of q can be
distinguished by some additional information in the
node which stores q, the search procedure of d will
find all of the prefixes of d on the search path. This is
the reason for defining the Match Vector for a key
which was stated in the last section. Based on the
above lemma, the insertion procedure will be as
follows:

To insert a "newPrefix" in the tree, or to determine
the insertion path, the algorithm starts from the "root
node". Visiting any node in the insertion path in which
a key r is stored, the "newPrefix" is compared with r.

1- If the "newPrefix" is a prefix of the Max-length
Prefix of r, then the corresponding bit in the "match
vector" of r will be set to one, and the algorithm will
be continued. In other words:

If "newPrefix" MP(r), then r.mv(len(newPrefix)-
1)=1.

2- The insertion procedure selects the next node to
go through. Based on the result of comparison if
"newPrefix"<MP(r), then the procedure goes to the
left child of r, otherwise it goes through the right
child.

3- This procedure will continue till reaching a leaf
node. Then, a right or left child will be created based
on the above procedure and the prefix will be inserted
into this new node. It is necessary to emphasize that
part 1 is done only one time during the insertion
procedure of each "newPrefix".

This is the result of a property of CP-BST which is
stated by lemma 3:

Lemma 3- In the insertion process of a prefix p,
consider the following set of inserted prefixes:

P={pi | 1 i n, p pi}
If P is not empty, for the insertion of p in CP-BST:

a. The existence of at least one member of P is
indicated in the match vectors of insertion path.

b. It is only necessary to update the match vector
of the first visited member of P in the insertion path of
p.

Proof- part ‘a’ can be proved using lemma 2.
However, a complete proof for parts ‘a’ and ‘b’ is
given in the Appendix.

Lemma 3 and its proof point to an important
property of Coded Prefix Search trees which we call
“Master/Slave property” and it is also true for CP-
BST. According to Master/Slave property, starting
from the root of the tree:

For each sub-tree S of a coded prefix tree, a match
vector bit stored in root(S) (which indicates the
existence or nonexistence of a prefix in its sub-tree)
overrules all of the match vector bits of sub-tree S for
the same prefix. In other words, if p is prefix of both
the key stored in the root of S (named “skey”) and
another key k stored somewhere in S and len(p)=i,
then skey.mv(i-1) indicates the existence or
nonexistence of p in the database. This means that
k.mv(i-1) will be overruled by skey.mv(i-1).

 For an example of insertion procedure with w=7,
consider the following prefixes:

p1=010000*, p2=0100011, p3=01000*, p4=0100*,
p5=010* and p6=00*

Also consider that they will be inserted into the
tree with the following order: p1, p3, p4, p5, p6, p2

Based on the result of the insertion process in
Fig.1, although p4 is a prefix of p3 (01000* in node B),
since it already has set one match vector bit once
during its insertion (in node A of Fig.1), it does not
update the match vector of p3 (Node B) and the same
procedure is done for inserting p5 and p6.

As an example of the Master/Slave property, look
at the pairs of match vector and key in nodes A
(0011110,0100000) and B (0000100,0100000) of
Fig.1. The match vector and key pair of node A, tells
us that 010*,0100*, 01000* and 010000* exist in the
database. However, the same pair (mv=0000100,
key=0100000) in node B only indicates that 01000*,
the Max-length prefix of key=0100000, exists in the
database. Since A is the Master and B is the Slave, the
information of A overrules the information of B in a
search procedure which reads the information of both
nodes. It means that 010*, 0100*, 01000* and
010000* exist in the database.

It is worth mentioning that one of the major
differences between this algorithm and Trie based
algorithms is the worst case height of the tree. Most of
the Tries have the worst case height of O(w) where w
is the IP address length. But the worst case tree height

of this algorithm completely depends on the number of
prefixes n and the type of tree used. As shown in the
next sections, using some types of balanced trees
causes the worst case tree height to become O(log(n))
which is a good result since it makes the tree height
independent from the IP address length while making
the algorithm capable of doing incremental updates.

B. Search Procedure
Based on the insertion procedure and lemma 2

which were stated in the previous section, the search
procedure for CP-BST is as follows:

A simple search algorithm is done to search the
LMP of a given address d. First of all, a match vector
d.mv will be considered for d (without loss of
generality, this vector may be considered as all “x”
bits). Then, starting from the root, d will be compared
with m=MP(root node key) and its prefixes. If any
prefix of m (including m itself) is also a prefix of d,
then its corresponding bit in the match vector of m (0
or 1) will update the same bit of d.mv, but only if this
is the first time this bit is being updated. This is due to
the fact that based on the Master/Slave property
mentioned earlier, if any bit of d.mv has been updated
once by ‘0’ or ‘1’ during the search procedure, it will
not be updated again.

Using the result of the comparison of d and the
root node key, the search will continue through one of
its child nodes in a similar manner.

For an example of the search procedure in the tree
of Fig.1, let’s assume d=0100010, then
d.mv=’xxxxxxx’ . In the root node, the search
procedure, finds 010*, 0100*, and 01000* as prefixes
of d, then d.mv will be updated to xx111xx. Since
d>0100000, the search continues to node C. Although
the corresponding match vector bits of 010*, 0100*,
and 01000* are equal to zero in node C, since the
corresponding bits of d.mv are updated to ‘1’,
according to the Master/Slave property, these bits
should not update d.mv again. Noting that 0100011
(the Max-length prefix stored in node C) is not a prefix
of d, the final d.mv will be xx111xx and therefore
LMP(d)=01000*. Note that the whole height of the
tree should be traversed by the search procedure to
find LMP(d). For example, if d=0100011, checking
the Max-length prefix stored in node C, causes
d.mv[6] to become ‘1’ and the final d.mv to become
‘xx111x1’which means that LMP(d)=0100011.

IV.SCALAR PREFIX SEARCH: ANOTHER VERSION
OF CODED PREFIX SEARCH

Look at Fig.A1 and the proof of Lemma 2. Assume
that the prefixes are inserted into a Binary Search Tree
with an arbitrary order. Consider d as an input IP
address and assume that the objective is to search
LMP(d) in the tree. If pi is a prefix stored in the tree
and also pi d, based on the proof of Lemma 2 and
Fig.A1, if the search path of pi is separated from the
search path of d in a node containing a vector e.g. q,
the relation pi q will always be true.

Based on the above property, we introduced Coded
Prefix Trees in the last section. Since the existence of
pi is indicated by both match vectors of pi and q,
key(pi) whose Max-length prefix is pi and is located in

the left sub-tree of q in Fig.A1, can be removed from
the tree, because its information is redundant. Scalar
Prefix Trees are introduced based on the idea of
removing all such redundancies and compressing the
Coded Prefix Trees as much as possible. Removing
these redundancies causes the prefixes of each node to
become completely different from the other nodes i.e.
each node key and its match vector are representatives
of a set of prefixes that do not exist in any other node.

The idea of scalar prefix trees is also applicable to
many types of trees including balanced trees such as
B-tree, RB-tree and AVL-tree by some modifications
in their search and update procedures. However, to
simply describe the main idea, we explain its
application to Binary Search Tree and call it Scalar
Prefix Binary Search Tree or SP-BST. For the details
of its application to the B-tree (called SP-BT and SP-
BTe), the Red-Black tree (called SP-RB) and the
AVL-tree (called SP-AVL), and also the major
modifications in the search and update procedures of
these trees, refer to [25].

A. Insert Procedure for SP-BST
To insert a “newPrefix”, or to determine the

insertion path, the algorithm starts from the “root
node”. Visiting any node in the insertion path in which
a key r is stored and to make a decision on insertion or
continuing on the insertion path, the “newPrefix” is
compared with r.

If the “newPrefix” is a prefix of the Max-length
Prefix of r, then the corresponding bit in “match
vector” of r would be set to one, and the algorithm
returns. In other words:

If “newPrefix” MP(r), then:

 r.mv(len(newPrefix)-1)= 1.

Figure 1 Example for insertion steps into CP-BST

But if the Max-length Prefix of r is the prefix of
the “newPrefix”, then the corresponding bit with the
length of len(newPrefix) in the “match vector” of r
would be set to one and the key(newPrefix) is stored as
r and algorithms returns or:

If MP(r) “newPrefix”, then:

 r.mv(len(newPrefix)-1)=1 and r=key(newPrefix).

Else, if MP(r) and “newPrefix” are disjoint, based
on the result of comparison, the insertion procedure
selects the next node to go through. If
“newPrefix”<MP(r), then the procedure goes to the
left child of r, or else it goes through the right child.

This procedure will continue till it is terminated in
a node or it reaches a leaf node but is not terminated.
Then a right or left child will be created based on the
procedure above and the prefix will be inserted in the
new node.

For an example of the insertion process, consider
the prefixes of the example of section III.A with the
same arriving order. Fig.2 shows the tree after the
insertion of the above prefixes. Comparing Fig.2 with
Fig.1, the SP-BST of the above prefixes, shows a good
compression ratio and also a shorter tree height
compared to Coded Prefix Trees. Details of the prefix
deletion procedure for SP-BST are included in [25].

B. Search Procedure for SP-BST
The search procedure for the Longest Matching

Prefix of address d is started from the root and may be
finished in a leaf or non-leaf node.

Consider a match vector d.mv for d. In each node n
that is being searched, if its Max-length prefix is a
prefix of d, then it is the Longest Matching Prefix we
look for, and the procedure will be terminated. In other
words, let's consider keyn as the key stored in n. If
MP(keyn) d, then:

MP(keyn)= LMP(d) and the procedure will be
terminated.

Otherwise, if some other prefixes of keyn match
with d, the corresponding bit in d.mv will be set to one.

Then, if d>keyn, the procedure goes through the
right child of n. Otherwise, it goes through its left
child. It then repeats the procedure at the child node.

Figure 2 The SP-BST for the prefixes of Figure 1

For example, assume that the objective is to find
LMP(d) in Figure 2 considering d=0100010. The
search starts from the root node. Keyr=0100000 is
stored in this node.

Since MP(Keyr)! d, but some other prefixes of
Keyr match d, their corresponding bits in d.mv will be
set to one. Therefore, d.mv=0011100. Then, since d>
Keyr, the procedure should check the right child of the
root node. Since in the right child node, no new
matching prefix of d is found, the procedure will be
terminated after checking the match vector and key of
node C. Therefore, LMP(d)=01000* which
corresponds to the least significant ‘one’ in d.mv.

As another example, consider d=0100001.
Checking the root node, MP(Keyr) d
(010000* 0100001). Therefore, the first condition is
met. This, guarantees that LMP(d)=
MP(Keyr)=p1=010000*. In this case, it is not
necessary to continue traversing the tree.

C. Properties of Scalar Prefix Trees

Based on the search and insert procedures and the
above examples, SP-BST has some properties listed
below:

a. The Max-length prefixes of all node keys in the
tree are disjoint. For example, in Figure 2, the disjoint
Max-length prefixes of the nodes are 010000*,
0100011 and 00*.

b. In Scalar Prefix Search, any time the search for
address d reaches a key k whose Max-length prefix is a
prefix of d or if p=MP(k) and p d, then p will be the
LMP(d) and therefore the search will be terminated.
This is one advantage of Scalar Prefix Trees compared
to Coded Prefix Trees because the search may be
terminated in a non-leaf node. For the proof, please
look at the Lemma 4 which is explained in the
appendix.

c. A prefix is stored in the match vector of only
one key in the tree.

d. If p is a prefix of k1, k2, k3,…, kn and j is the
index of the key of the node with the least height
among k1, k2, k3,…, kn, then the prefix p would be
stored only in the match vector of kj and then:
kj.mv(len(p)-1)=1.

 Based on the above properties, up to w prefixes
can be stored in a key. Therefore, if np is the number
of prefixes and nk is the number of the node keys in
the tree, then always nk np. The equality holds only
when all of the prefixes are disjoint. This is also one
advantage of Scalar Prefix Trees compared to Coded
Prefix Trees because a key of SP-BST may contain up
to w prefixes. Therefore, the average height of the tree
is reduced. On the other hand, compared to range
based algorithms, since all of w prefixes of a key can
be stored in “one” pair of (match vector, key) and also
our scheme does not need to store both of the end
points of a prefix, the average storage would be
reduced as well. Compared to Trie based solutions, it
has the advantage of not being dependent on the IP

address length in the number of node accesses for both
search and update procedures.

V. BALANCED TREE VERSIONS OF THE MAIN IDEA
Since there is no guarantee for the height of the

SP-BST and the CP-BST, the concept of Coded and
Scalar Prefix Search has been applied to some
balanced trees such as B-tree (named CP-BT, SP-BT),
RB-tree (named CP-RB, SP-RB) and AVL-tree
(named CP-AVL, SP-AVL). These trees have the
property that can guarantee and control the worst case
height of the tree to be O(log n). Therefore, the
complexity of the search and update procedures for
these trees is O(log n) as well.

VI. COMPLEXITY ANALYSIS AND COMPARISON
RESULTS

Since there is no guarantee for the height of the
CP-BST or SP-BST, we focus on the balanced tree
versions of both algorithms in finding the search,
update and memory complexities for hardware
implementation.

Since the height of a CP-BT or SP-BT with the
degree t is always less than logt(n+1)/2 [1] in which n
is the number of prefixes, the number of node accesses
for search, insert and delete will be O(logtn).
Similarly, it will be O(log n) for Red-Black and AVL
versions.

Many linear operations like shifting operations are
done in the update procedures in each node. These
operations have the complexity 2t in software where t
is the order of the B-tree. However, the complexity of
these operations will be O(1) in hardware. Similar
discussions can be done for the search operations.
Therefore the algorithms have better search and update
performances in hardware implementation.

We implemented different versions of our
proposed algorithms for both IP versions IPV4 and
IPV6 in software:

- The B-tree version of Scalar Prefix Search, SP-BT
and Coded Prefix search, CP-BT

- The Red-Black and AVL tree versions of “Coded
Prefix Trees” and “Scalar Prefix Trees” named CP-
RB, CP-AVL and SP-RB, SP-AVL.

Additionally, two famous B-tree solutions
PIBT [16] and BTLPT [17] and one Trie based
solution LPFST [5] were implemented in software
using real databases for both IP versions IPV4 and
IPV6, to compare our algorithms with other solutions.

A. Used Databases
To compare different solutions for IPV4 databases,

three IPV4 prefix real databases AS4637, AS1221 and
AS131072 have been used. The first one which
contains 139519 prefixes was downloaded in August
2008 from [28] which is the main reference for IPv4
and IPv6 real databases. The second one contains
191566 prefixes and it was downloaded from [28] in
August 2008. The third one which contains 313453
prefixes was downloaded from [28] in January 2010.

Also two IPV6 databases AS1221 and AS131072
have been used to compare different solutions for

IPV6. The first one contains 933 prefixes which was
downloaded from [28] in August 2008 and the second
one that contains 2523 prefixes was downloaded
from [28] in January 2010.

B. Software Test Setup
To make sure that the results are independent from

the CPU model, cache size or other restricting issues,
all software simulations are compared based on the
number of required node accesses for search and
update procedures and the storage requirements. These
parameters would also give a good indication of the
hardware implementation efficiency and performance.
To compute the performance parameters, test
scenarios were repeated several times using members
of those databases with random ordering and were
averaged. The test method is as follows:

First, all of the prefixes of a database were inserted
into the structure to find the storage requirements.
After that, each prefix was deleted and reinserted
again. This may change the tree structure and may
create another level of randomness. Each time the
insertion or deletion is done, the number of node
accesses is computed. This procedure is done several
times for all prefixes using a random ordering of the
prefixes.

Each time a tree is constructed, searches are done
using IP addresses which are constructed using
prefixes of the databases.

C. The Results of B-tree Schemes
In the results presented in this paper, the minimum

degree of the B-tree is t=14. However, similar results
have been obtained for other degrees. Figure 3 shows
the search (part a), update (part b) and memory (part c)
results of CP-BT and SP-BT compared to PIBT and
BTLPT for IPV4 databases.

As shown in Fig 3.a, the required number of node
accesses of the search procedure of SP-BT (or SP-
BTe) is the best for all three databases. The CP-BT has
also comparable results. Similar update results are also
shown in Fig 3.b. Figure 3.c shows the results of
storage requirements of these solutions. It is clear from
the results that although the average search
improvement of SP-BT(SP-BTe) might be small
compared to PIBT, the update performance has improved
substantially. Also, while the memory storage of BTLPT is
slightly less than our algorithms, both search and update
performances of our algorithms have been improved a lot.

 Please also note that the presented performances
are for average case, In the worst case, the search
procedure of BTLPT would degrade by a big factor
due to its dependency on Trie-based search of its
LPFST part. A similar situation exists for the worst
case update procedure of both BTLPT and PIBT.

Figure 4 shows the search, update and storage
results for the above B-tree schemes for IPV6
databases. Checking these figures, a similar conclusion
can be made for IPV6.

D. The Results of other Balanced Tree Schemes
After extending the idea of CP-BT and SP-BT to

Red Black and AVL Binary Balanced trees which
were called CP-RB and CP-AVL, SP-RB and SP-AVL

respectively, their results were compared with LPFST
which is a binary Trie. Figures 5 and 6 show their
search, update and memory results for IPV4 and IPV6
prefix databases. As depicted in these figures for
average case, although LPFST has slightly better
storage results, the search results of SP-RB, SP-AVL,
CP-RB and CP-AVL are better than LPFST for all
IPV4 and IPV6 databases, and the update results of
SP-RB are the best among them. This result is due to
the balanced structure of these trees compared to
LPFST.

Again, in the worst case scenario, the performance
of LPFST would degrade much more due to its Trie
based architecture and possible growing of the tree
height as a function of w.

This dependency of the performance of LPFST to
the Trie height and w does show itself for the IPv6
even for the average case and small number of
prefixes in database.

VII. CONCLUSION
In this paper, novel schemes called ‘Coded Prefix

Search’ and ‘Scalar Prefix Search’ which introduce a
coding concept for prefixes to make them numerically
comparable were proposed. Using this concept, in
Coded Prefix Trees, a pair of (match vector, key) is
used to show a prefix. However, in Scalar Prefix Trees,
this pair is the representative of at most w prefixes
which makes the tree more compressed. Various tree
data structures among which balanced trees are
preferred due to their limited O(log n) height; where n
is the number of prefixes; may be used by these
schemes. The required operations to correctly perform
the search and update procedures were given and
proved. The schemes were implemented and simulated
in software using B-tree, Red Black tree and AVL-tree,
and the results were compared with those of current
well-known competitive solutions which also use
balanced trees like PIBT and BTLPT or Trie-based
solutions like LPFST for both IPV4 and IPV6
databases. To be independent from the software or
hardware platforms, all simulations are compared
based on the number of required node accesses for
search and update procedures and the storage
requirements. Both two proposed schemes, show
superior results for search, update and also storage
requirements both in average and worst case.

Finally, the main contribution of this work is
treating prefixes like numbers. This makes the ability
of searching and updating prefixes without being
depended on IP address length and also the possibility
of fast incremental updates compared to some well-
known competitive solutions.

Figure 3 The results of the B-tree schemes for IPV4 databases

Figure 4 The results of the B-tree schemes for IPV6 databases

Figure 5 The results of other balanced tree schemes for IPV4 databases

Figure 6 results of other balanced tree schemes for IPV6 databases

SPBT

SPBT

SPBT

C
PBT

CPBT

CPBT

BTLPT

B
TLPT

BTLPT

PIBT

PIBT

PIBT

0

2

4

6

8

10

12

AS4637
139519 Prefixes

AS1221
191566 Prefixes

AS131072
313453 Prefixes

SPBT

CPBT

BTLPT

PIBT

IPV4 Memory (MB) results

SPBT

SPBT

SPB
T

C
PBT

CPBT

C
PBTB

TLPT

B
TLPT

B
TLPTPIBT

PIBT

PIBT

0

1

2

3

4

5

6

AS4637
139519 Prefixes

AS1221
191566 Prefixes

AS131072
313453 Prefixes

SPBT

CPBT

BTLPT

PIBTN
um

be
r o

f n
od

e
ac

ce
ss

es

IPV4 Search results

SPBT

SPBT

SPBT

CPBT

C
PBT

CPBT

BTLPT

BTLPT

B
TLPT

PIBT

PIBT

PIBT

0

5

10

15

20

25

30

AS4637
139519 Prefixes

AS1221
191566 Prefixes

AS131072
313453 Prefixes

SPBT

CPBT

BTLPT

PIBT

IPV4 Update results

N
um

be
r o

f n
od

e
ac

ce
ss

es

(a) (b) (c)

M
eg

a
by

te
s

CPBT

CPBT

SPBT

SPBT

PIBT

PIBT

BTLPT BTLPT

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

AS1221
933 Prefixes

AS131072
2523 Prefixes

CPBT

SPBT

PIBT

BTLPT

IPV6Search
results

CPBT

CPBT

SPBT

SPBT

PIBT

PIBT

BTLPT

BTLPT

0

2

4

6

8

10

12

14

AS1221
933 Prefixes

AS131072
2523 Prefixes

CPBT
SPBT
PIBT
BTLPT

IPV6 Update results

N
um

be
r o

f n
od

e
ac

ce
ss

es

CPBT

CPBT

SPBT

SPBTPIBT

PIBT

BTLPT

BTLPT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

AS1221
933 Prefixes

AS131072
2523 Prefixes

CPBT
SPBT
PIBT
BTLPT

IPV6 Memory
(MB) results

M
eg

a
By

te
s

(c)

N
um

be
r o

f n
od

e
ac

ce
ss

es

(a) (b)

SPRB

SPRB

SPAVL

SPAVL

CPRB

CPRB

CPAVL

CPAVL

LPFST LPFST

0

5

10

15

20

25

30

AS1221
933 Prefixes

AS131072
2523 Prefixes

SPRB

SPAVL

CPRB

CPAVL

LPFST

IPV6
Search
results

SPRB

SPRB

SPAVL

SPAVL

CPRB

CPRB

CPAVL

CPAVL

LPFST LPFST

0

5

10

15

20

25

30

35

40

AS1221
933 Prefixes

AS131072
2523 Prefixes

SPRB

SPAVL

CPRB

CPAVL

LPFST

IPV6
Update
results

N
um

be
r o

f n
od

e
ac

ce
ss

es

(b)

SPRB

SPRB

SPAVL

SPAVL

CPRB

CPRB

CPAVL

CPAVL

LPFST

LPFST

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

AS1221
933 Prefixes

AS131072
2523 Prefixes

SPRB

SPAVL

CPRB

CPAVL

LPFST

IPV6
Memory(MB)
results

M
eg

a
By

te
s

(c)

N
um

be
r o

f n
od

e
ac

ce
ss

es

(a)

SPA
V

L

SPAV
L

SPAV
L

C
PA

V
L

C
PA

V
L

C
PA

V
L

15

16

17

18

19

20

21

AS4637
139519 Prefixes

AS1221
191566 Prefixes

AS131072
313453 Prefixes

SPRB

SPAVL

CPRB

CPAVL

LPFST

IPV4 Search results

N
u

m
b

e
r o

f n
o

d
e

 a
cc

e
ss

e
s

SP
R

B

SP
R

B

SP
R

B

SPA
V

L

SPAV
L

SPAV
L

C
P

R
B

C
P

R
B

C
P

R
B

C
PA

V
L

C
PA

V
L

C
PA

V
L

LP
FST

LP
FST

LPFST

0

0.5

1

1.5

2

2.5

3

3.5

4

AS4637
139519 Prefixes

AS1221
191566 Prefixes

AS131072
313453 Prefixes

SPRB

SPAVL

CPRB

CPAVL

LPFST

IPV4 Memory (MB) results

M
e

ga
 B

yt
e

s

(c)

CPAVL CPAVL
CPAVL

LP
FST

LP
FST

LP
FST

15

17

19

21

23

25

27

AS4637
139519 Prefixes

AS1221
191566 Prefixes

AS131072
313453 Prefixes

SPRB
SPAVL
CPRB
CPAVL
LPFST

IPV4 Update results

N
um

b
er

 o
f

n
o

de
 a

cc
es

se
s

(b)(a)

APPENDIX
Lemma1- consider two prefixes p, q. If p is a prefix

of q, then p q.

Proof- Since p is a prefix of q, if len(p)=lp, the first
lp bits of p and q will be the same. Also, the "lp+1"th

place of p will be blank space which is less than or
equal to the "lp+1"th place of q which is 0,1 or blank
space. Therefore, p will be less than or equal to q.

Lemma 2- Consider a set P of prefixes which are
inserted into a binary search tree with an arbitrary
order. Consider d as an input IP address and assume
that the objective is to “search d” in the tree. If pi is a
member of P stored in the tree and also pi d, then at
least one vector q will be found in the search path of d
with the property of pi q.

Proof idea- The proof uses contradiction. Consider
that the conclusion of the lemma is not true. If pi is in
the search path of d, then q=pi which contradicts the
assumption. If pi is not in the search path of d, assume
that the search path of pi is separated from the search
path of d in a node containing a vector e.g. q (Figure
A1). Also, the following relationships can be verified
from Figure A1 and the assumptions of the lemma:

pi q, q d, pi d (1)

pi d results in:
pi(0:len(pi)-1)= d(0:len(pi)-1) (2)

Now, two states may exist:

len(q) len(pi) and len(pi)> len(q).

If len(q) len(pi), we can say:

pi(0:len(pi)-1)< q(0:len(pi)-1) (3)

(2), (3) result in:

d(0:len(pi)-1)< q(0:len(pi)-1) (4)

which means d<q which contradicts (1).

If len(pi)> len(q), the proof will be similar.

Therefore, at least one vector q will be found in the
search path of d with the property of pi q.

Lemma 3- In the insertion process of a prefix p,
let’s consider the following set of inserted prefixes:

P={pi | 1 i n, p pi}

If P is not empty, then for insertion of p in CP-
BST:

a. The existence of at least one member of P is
indicated in the match vectors of insertion path.

b. It is only necessary to update the match vector
of the first visited member of P in the insertion path of
p.

Proof of a:

Select a prefix pi P. p pi results in p<pi.
Therefore p should be inserted in the left side of pi in
the tree. This is shown in Figure A2.

Assume that k is the Max length prefix of the node
key, at which the search path of p is separated from

the search path of pi (Figure A2). Looking at Figure
A2, it results in:

 p<k<pi.

We will show that in this case p k .To prove this,
we use contradiction. Let’s assume p! k, then two
cases may exist:

Case a.1- len(k)<len(p)

Case a.2- len(k) len(p),

we check each case separately.:

Case a.1. len(k)<len(p):

Since p<k, and len(k)<len(p), we conclude:
p(0:len(k)-1)<k(0:len(k)-1).

Note that p(0:len(k)-1) and k(0:len(k)-1) represent
the first len(k) bits of each of p and k .

On the other hand, since p pi, and len(k)<len(p),
we conclude:

p(0:len(k)-1)=pi(0:len(k)-1)<k(0:len(k)-1).

This results in pi<k which is a contradiction.

Figure A1 A BST for prefixes using the concept of coded
prefixes

Figure A2 The places of p and pi in the tree

Case a.2. len(k) len(p):

This case results in:

p(0:len(p)-1)<k(0:len(p)-1).

On the other hand, since p pi, it is clear that:

p(0:len(p)-1)=pi(0:len(p)-1)<k(0:len(p)-1).

This will lead to pi<k which is also a contradiction
with Figure A2.

As these two cases contradict the assumptions, it
can be concluded that p k which means k P.
Therefore, at least one of the members of P is
traversed along the insertion search path of p.

Proof of b:

 Again we will prove it using contradiction.
Consider the following definition for key(k):

“key(k)” is the first stored key in the search path
for insertion of p with the property of p k where k is
MP(key(k)).

Since p k then previous definitions and lemmas
result in:

(1) k(0:len(p)-1)=p(0:len(p)-1)

(2) key(p) key(k)

Assume that part b of the lemma is not true. It
means that it is not sufficient to only update the match
vector of key(k) in the search path for insertion of p.

As a result of this assumption, if only the match
vector of key(k) is updated in the update procedure of
p, there should be at least one LPM search procedure
that will not find p for an arbitrary address d for which
p d.

(3) Since p d, it results in keyp d,

Now, consider the following definition for keyj:

keyj is the first key in the search path of d with the
property of p j (or p (MP(keyj)=j)),

Now, two cases may occur:

Case b.1: keyj exists

Case b.2: keyj does not exist.

Let’s consider case b.1. Based on the existence of
keyj:

(4) Since p j then, j(0:len(p)-1)=p(0:len(p)-1)

(5) Keyp keyj

It is also shown in Figure A3

Since based on the assumption the search
procedure should not find p, then:

(6) keyj.mv(len(p)-1)=0

This means that the insertion path of p is separated
from the search path of d in a node e.g. "n" storing a
key e.g. keys whose Max length prefix is "s". Now two
cases may occur,

Case b.1.1: d<keys

Case b.1.2: keys d (Figure A3).

Let’s consider Case b.1.1 where we have:

i. d<keys

Also since keys is the separation point, then:

ii. keys<key(p)

(i), (ii) result in d<key(p) which contradicts (3).

Now, consider Case b.1.2: keys d,

Note that using the assumption that we could not
find p during the search of d and the definition of keyk
and keyj,, neither of them should be seen in the search
path until reaching keys. Because if either of them is
seen before reaching keys, this means that these two
keys are the same and the search of d will find p in its
path which is a contradiction. This also means keys
keyj.

Again, since keys is the separation point and also
d keys, we conclude keys keyj.

Using keys keyj results in:

iii. keys< keyj .

Since keyk should select a separate path:

iv. keyk< keys .

(iii) and (iv) are shown in Figure A3.

(iii), (iv) and (2) result in:

v. keyp< keys < keyj

Now, two cases may occur:

either len(s)<len(p) or len(s) len(p) .

Consider the first case: len(s)<len(p). In this case:

I. p(0:len(s)-1)<s(0:len(s)-1)

Based on this and since p j, we can conclude:
II. j(0:len(s)-1)<s(0:len(s)-1)

This means that keyj<keys and this contradicts (v).

Figure A3 Proof of lemma 2

The second case: len(s) len(p), results in:
III. p(0:len(p)-1)<s(0:len(p)-1)

Then, p j and III result in:

IV. j(0:len(p)-1)<s(0:len(p)-1)

This means: keyj<keys which contradicts (v).

For the case b.2, when in the search path of d in
Figure A3 no keyj such that p MP(keyj) is found,
again let’s consider node n and its key named keys as
the separation point. Similar to case b.1:

(7) keyp<keys<d

Again two cases may exist:

Case b.2.1: len(p) len(s)

Case b.2.2: len(p)>len(s)

Case b.2.1 results in:

vi. p(0:len(p)-1)<s(0:len(p)-1).

Therefore:

vii. d(0:len(p)-1)<s(0:len(p)-1) which

contradicts (7).

Case b.2.2 results in:

viii. p(0:len(s)-1)<s(0:len(s)-1).

Therefore:

ix. d(0:len(s)-1)<s(0:len(s)-1)

Therefore:

x. d<keys which again contradicts (7).

Therefore, at least one keyj is found such that
p MP(keyj) in the search path of d.

This proof guarantees that it is only needed to
update keyk.mv(len(p)-1) to '1' at the time of insertion.

Lemma 4- In Scalar Prefix Search, any time the
search for address d reaches a key k whose Max-length
prefix is a prefix of d or if p=MP(k) and p d, then p
will be the LMP(d), and therefore the search will be
terminated.

Proof idea- The proof is done using contradiction.
Assume that MP(k) d and the search is not
terminated in the node containing k. If the search
procedure finds another prefix p' and p' d, p p',
then these relations show that p' is a prefix whose
existence is indicated in the match vector of a key k’
and we have:

MP(k) MP(k') or p k'.

Based on the properties of Scalar Prefix Trees
mentioned in section 4.3, the Max-length prefixes of
all of the keys must be disjoint. Therefore, the above
relations contradict this property, and the search
procedure is terminated in the node containing k.

REFERENCES

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, ‘Introduction to
algorithms’, MIT Press, 1990.

[2] D.R. Morrison, ‘PATRICIA Practical algorithm to retrieve
information coded in alphanumeric’, Journal of the ACM,
Vol.15,no.14, (October 1968), pp.514-34.

[3] S. Nilson, G. Karlsson, ‘IP address lookup using LC-tries’,
IEEE JSAC, Vol.17, (June.1999), pp.1083-1092.

[4] V. Srinivasan, G. Varghese, ‘Faster IP lookups using
controlled prefix expansion’, ACM Transactions on Computer
Systems, vol. 17, no. 1, (February 1999), pp.1-40.

[5] L.C. Wnn, K.M. Chen, T.J. Liu, ‘A longest prefix first search
tree for IP lookup’, Proc. ICC’05, May 16-20, 2005, pp.989 –
993.

[6] P. Gupta, S. Lin, N. McKeown, ‘Routing lookups in hardware
at memory access speeds’, Proc. IEEE INFOCOM, 1998.

[7] W. Eatherton, G. Varghese, Z. Dittia, ‘Tree
bitmap: hardware/software IP lookups with incremental
updates’, Proc. ACM SIGCOMM,, 2004, pp. 97-122.

[8] Le, H., Jiang, W. and Prasanna, V.K., ‘A SRAM-based
architecture for Trie-based IP lookup using FPGA’, Proc.
16th IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM '08), 2008.

[9] Fadishei, H., Saeedi, M., and Zamani, M. S., ‘A fast IP
routing lookup architecture for multi-gigabit switching routers
based on reconfigurable systems’, Microprocessors and
Microsystems, vol. 32, no. 4. pp.223-233, 2008.

[10] Y-H. E. Yang, O. Erdem, V.K. Prasanna, ‘Scalable
Architecture for 135 GBPS IPv6 Lookup on FPGA’, FPGA
'12 Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays, 2012

[11] Jiang, W. and Prasanna, V.K., ‘Sequence-preserving parallel
IP lookup using multiple SRAM-based pipelines’, Journal of
Parallel and Distributed Computing, vol. 69, no. 9. pp.778-
789, 2009.

[12] J.Zhao, X. Zhang, X. Wang, Y. Deng, X. Fu, ‘Exploiting
Graphics Processors for High-performance IP Lookup in
Software Routers’, Proc.IEEE INFOCOM 2011.

[13] O. Erdem, C.F.Bazlamacci, ‘High Performance IP Lookup
Engine with Compact Clustered Trie Search’, The computer
Journal, Section B, February 2012.

[14] B. Lampson, V. Srinivasan, G. Varghese, ‘IP lookups using
multiway and multicolumn search’, IEEE/ACM Transactions
on Networking, Volume 7, Issue 3, (June 1999).

[15] S. Suri, G. Varghese, P.R. Warkhede, ‘Multiway range trees:
scalable IP lookup with fast updates’, Computer Networks,
vol. 44, no. 3, (2004), 289-303.

[16] H. Lu, S. Sahni, ‘A B-Tree Dynamic Router-Table Design’,
IEEE Transactions on Computers, Vol.54, (2005), 813-823.

[17] Q. Sun, X. Zhao, X. Huang, W. Jiang, Y. Ma, ‘A Scalable
Exact matching in Balance Tree Scheme for IPv6 Lookup’,
ACM SIGCOMM 2007 data communication festival, IPv6'07,
August.27-31, 2007.

[18] Y.K. Chang, Y.C. Lin, ‘Dynamic segment trees for ranges
and prefixes’, IEEE Transactions on Computers, Vol 56, No.
6, pp. 769-784, 2007.

[19] H. Lim, H. Kim, and C. Yim, ‘IP Address Lookup for Internet
Routers Using Balanced Binary Search with Prefix Vector’,
IEEE Trans. Commun., vol. 57, no. 3, Mar. 2009, pp. 618-
621.

[20] N. Yazdani, P. Min, ‘Prefix Trees: New Efficient Data
Structures for Matching Strings of Different Lengths’, Proc.
International Database Engineering and Applications
Symposium, Grenoble, France , Jul. 2001.

[21] F. Pong, ‘Concise Lookup Tables for IPv4 and IPv6 Longest
Prefix Matching in Scalable Routers’, IEEE/ACM
Transactions on Networking, Vol. 20, Issue 3, pp. 729-741,
June 2012.

[22] R. Govindaraj, I. Sengupta, S. Chattopadhyay, ‘An Efficient
Technique for Longest Prefix Matching in Network Routers’,
Springer LNCS, Vol. 7373, pp. 317-326, July 2012.

[23] H. Lim, K. Lim, N. Lee, Kyeong-hye Park, ‘On Adding
Bloom Filters to Longest Prefix Matching Algorithms’, IEEE
Transactions on Computers, 08 Aug. 2012

[24] M. Behdadfar, H. Saidi, ‘The CPBT: A Method for Searching
the Prefixes Using Coded Prefixes in B-Tree’, Proc. IFIP
Networking 2008, pp. 562-573.

[25] M. Behdadfar, H. Saidi, H. Alaei, B. Samari, ‘Scalar Prefix
Search: A New Route Lookup Algorithm for Next Generation
Internet’, Proc. IEEE INFOCOM 2009.

[26] M. Behdadfar, H. Saidi, M.R. Hashemi, A. Ghiasian and H.
Alaei, ‘IP Lookup Using the Novel Idea of Scalar Prefix
Search with Fast Table Updates’, IEICE Trans. INF. And
SYST., VOL. E93-D, NO11, Nov. 2010, pp. 2932-2943.

[27] M. Behdadfar, H. Saidi, M.R. Hashemi, Y-D. Lin, ‘Coded
and Scalar Prefix Trees: Prefix Matching Using the Novel
Idea of Double Relation Chains’, ETRI Journal, Vol. 33, No.
3, June 2011, pp. 344-354.

[28] http://bgp.potaroo.net

Mohammad Behdadfar was born in
Iran in September, 1977. He received
his B.Sc., M.Sc. and Ph.D. degrees in
1999, 2002 and 2010 respectively
from Isfahan University of
Technology all in Electrical &
Computer Engineering. He is
currently an Assistant Prof. in the
Engineering Department of IRIB

University. His current research interests are in the area
of high-speed networking, video networking,
switch/router design and algorithms.

Masoud-Reza Hashemi received his
B.Sc. and M.Sc. degrees from Isfahan
University of Technology in 1986 and
1988 respectively, and his Ph.D.
degree from University of Toronto in
1998 all in Electrical and Computer
Engineering. From 1988 to 1993 he
was with Isfahan University of

Technology as a faculty member. From 1998 to 2000 he
was a Postdoctoral Fellow at University of Toronto.
Massoud Hashemi joined Accelight Networks as a
founding member in 2000. Since 2003 he has been with
Isfahan University of Technology. His current research
interests include switch architecture, data centric
networking, smart grid, and sensor networks.

Hossein Saidi received B.Sc. and
M.Sc. degrees in Electrical Eng. in
1986 and 1989 respectively, both from
Isfahan University of Technology
(IUT), Isfahan Iran. He also received
his D.Sc. in Electrical Eng. from
Washington University in St. Louis,

USA in 1994.
Since 1995 he has been with the Dept. of Electrical &
Computer Engineering at IUT, where he is currently an
Associate Prof. of Electrical & Computer Engineering.
His research interest includes high speed switches and
routers, communication networks, QoS in networks,
queuing system, security and information theory.

