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Abstract— This paper introduces a new prefix matching algorithm called “Coded Prefix Search” and its improved 
version called “Scalar Prefix Search” using a coding concept for prefixes which can be implemented on a variety of 
trees especially limited height balanced trees for both IPv4 and IPv6 prefixes. Using this concept, each prefix is 
treated as a number. The main advantage of the proposed algorithms compared to Trie-based solutions is that the 
number of node accesses does not depend on IP address length in both search and update procedures. Therefore, 
applying this concept to balanced trees, causes the search and update node access complexities to be O(log n) where n
is the number of prefixes. Also, compared to the existing range-based solutions, it does not need to store both end 
points of a prefix or to store ranges. Finally, compared to similar tree based solutions; it exhibits good storage 
requirements while it supports faster incremental updates. These properties make the algorithm capable of potential 
hardware implementation.  
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I. INTRODUCTION 
Longest Prefix Matching or LPM is the problem 

of finding the longest prefix of a w-bit address d, 
among a set of binary prefixes with the maximum 
length of w stored in a router table. A 
straightforward algorithm to find the Longest 
Matching Prefix or LMP of a given address is linear 
search  [1]. Considering n as the number of prefixes, 
the complexity of this algorithm will be O(n) which 
is not acceptable for large databases.  

Using a Radix tree or Trie  [1] in which each tree 
edge corresponds to one bit, the search and update 
complexities become O(w) which is better than 
linear search where w is 32 for IPv4 and 128 for 
IPv6. However, the search and update complexities 
of Trie are not acceptable for high speed switches. 
Some other versions of Trie such as Patricia  [2], 
LC-Trie  [3], Prefix Expansion  [4], LPFST  [5] 
or  [6],  [7] have also been introduced to improve 
search performance. But most of them suffer from 
the similar drawback and also do not support 
incremental updates or would not be extendable to 



IPv6. Some hardware schemes have also been 
introduced to improve the performance of Trie 
based structures using pipelining  [8], searching 
different lengths on parallel RAMs  [9], using 
FPGA [11] or parallel RAMs and FPGA  [10], using 
graphics processor unit (GPU)  [12] and compact 
clustered tries  [13]. However, the main drawback of 
the Trie-based searches still exists in these newly 
introduced methods.  

To reduce the dependency of prefix search 
algorithms to the address length, some "range 
based" algorithms were introduced. In these 
algorithms, two end points are defined for each 
prefix and stored in a binary search tree. By 
defining a range for each prefix, the search in the 
tree may be done by finding the most specific range 
corresponding to an address  [14]. The node access 
complexity of this structure is independent from w 
for the search procedure. The range based prefix 
search algorithms often need long time for the 
prefix update procedures even for some of those 
which used balanced trees to store the prefix end 
points  [15]. To support the fast search and also 
incremental updates, some range-based algorithms 
were introduced by the authors of  [16] among 
which PIBT has the best search performance  [16]. 
Since PIBT stores prefix end points in a B-tree, its 
search and update complexity is O(log(n)). It should 
be mentioned that two additional w-bit vectors for 
each prefix endpoint are applied in PIBT structure. 
Therefore, since each prefix has two end points, 
about 6 vectors might be stored in the tree instead of 
the prefix itself. This leads to a large storage 
requirment. One of the well known range-based 
lookup algorithms with better average results than 
PIBT is BTLPT  [17]. This algorithm uses two 
structures: a B-tree for disjoint prefixes and an 
LPFST for the remaining prefixes. However, the 
complexity of BTLPT still depends on w, based on 
the Trie-based behavior of LPFST.  

Some other range based methods like using 
segment trees  [18] or  [19] have also been 
introduced, however they still suffer from the main 
drawback of long prefix update procedures. 

“Prefix Trees” and “M-way Prefix Trees” are 
other algorithms proposed in  [20], and their main 
idea is to introduce a comparison rule for storing 
and searching the prefixes. The main drawbacks of 
these algorithms are the worst case tree height 
which is O(w) like Trie-based solutions and the long 
update procedures.  

It should be mentioned that other hardware 
solutions like using Hash [21], TCAM  [22] or 
Bloom filters  [23] have been used as well as the 
above methods since introduction of CIDR. 
However, most of them suffer from the problem of 
not supporting incremental updates. 

In  [24], we introduced a new algorithm called 
“Coded Prefix B-tree” or CP-BT. This scheme 
considers a coding concept for prefixes to compare 
them like numbers with =, < and >. Therefore using

 this concept, unlike range based algorithms, it is 
not required to store both prefix end points in the 
tree. The main idea of CP-BT is extended in this paper 
by introducing Coded Prefix Trees in which the tree 
height does not depend on IP address length. The idea 
of Coded Prefix Trees can be applied to many types of 
trees especially balanced trees like B-tree, RB-tree  [1] 
and AVL-tree [1]. It is also extended to another version 
of the algorithm called “Scalar Prefix Search” which 
was partially presented in  [25],  [26] and  [27]. In this 
paper, the results of both versions are compared with 
some competitive well-known algorithms like PIBT, 
BTLPT and LPFST for both IPV4 and IPV6 prefix 
databases. 

Based on the above discussions, the main 
weakness of Trie-based algorithms is their dependency 
of number of Trie node accesses to IP address length  
for search and update procedures. Also, other 
important weakness of range based algorithms is their 
inability of performing incremental updates and high 
storage requirements. The novelty of the idea which is 
introduced in this paper is covering the followings: 

- The number of node accesses for search and 
update procedures does not depend on the IP 
address length. 

- In comparison with most of the range based 
solutions, this scheme fully supports incremental 
updates in a single tree downward pass. 

- The proposed schemes are implementable on most 
of the tree data structures among which balanced 
trees are selected in this paper. 

- Coded Prefix Search is the first scheme that 
introduces a coding concept for comparing the 
prefixes like numbers without considering two 
end points per prefix. Actually, this coding 
concept plays the main role in most parts of the 
algorithms. 

The rest of the paper is organized as follows: The 
main idea of Coded Prefixes is reviewed in section 2. 
Section 3 describes the Coded Prefix Search 
algorithm. Scalar Prefix Search, the improved version 
of Coded Prefix Search is introduced in section 4. 
Application of both versions to balanced trees is 
discussed in section 5. Section 6 presents the 
complexity analysis, the implementation and 
simulation results of both versions of the algorithm 
compared to some well-known competitive solutions. 
Section 7 concludes the paper. The Appendix 
corresponds to lemma proofs. 

II. CODED PREFIXES: THE MAIN IDEA 
We propose a coding ‘concept’ in which unlike the 

range-based algorithms, prefixes are treated as 
numbers. Consider a k-bit prefix p. Since the IP 
address is considered to be w bits, the number of blank 
places of p is 'w-k'. For comparison, each bit of p 
would be encoded using a 2-bit value as follows: for 
each bit '1', the 2-bit '10'; for each bit '0', the two-bit 
'01' and for each blank place, the 2-bit '00' is used. For 
example, considering w=5, the prefix 01* will be 
encoded to 0110000000. 



Based on this definition, the prefixes can be 
compared like numbers using “=”, “<” and “>”. As an 
example, we will have: 

00001* < 0001* < 001* < 0010* < 010*< 100* 

This definition leads us to the following lemma.  . 

Lemma1- consider two prefixes p, q. If p is a prefix of 
q, then p  q. 

Proof- It is given in the appendix 

Please note that we will use the ‘concept’ of the 
mentioned coding to only ‘describe’ the algorithm, but 
‘not to store the prefixes’. The prefixes are stored in 
the memory as a usual ‘w’ bit vector with one 
additional vector which will be introduced in the next 
section. 

III. CODED PREFIX SEARCH: THE IDEA 
The method of section 2 can be applied to many 

types of trees. Although it is not efficient to apply this 
method to Binary Search Tree, just to simply describe 
the ‘Coded Prefix Search’ procedures, we will apply it 
to Binary Search Tree and then will extend it to other 
trees. After applying the method to this tree, it is 
named “Coded Prefix Binary Search Tree” or CP-
BST. First let’s define some notations:  

 len(p) shows the length of a prefix p.  

 p(i) shows ith bit of prefix p. 

 For each prefix p with len(p)=k, and k<w, we add 
w-k zero pads and we call it ‘key’ and show it as 
key(p) or keyp which will be inserted into the tree 
instead of the original prefix. ‘key(p)’ will be 
defined as: 

key(p)="p(0)p(1)p(2)…p(k-1)000…0"  

 e.g. if w=4 and p=101*, then:  
 key(p)="1010". 

 The notation p q shows that p is a prefix of q. 

 The notation p! q indicates that p is not a prefix 
of q. 

 If p! q and q! p, then p and q are called 
"disjoint" prefixes. 

 A prefix of p with the length of k is shown by 
prefk(p). 

 The Longest Matching Prefix of a string “S” is 
denoted as LMP(S). 

 For a key "r", a w bit "Match Vector" is defined 
and abbreviated with "r.mv".The ith bit of r.mv is 
called r.mv(i). If r.mv(i)=1, it means that there 
exists a prefix q of r with the length of i+1 or 
len(q)=i+1 or q=prefi+1(r) in the database. Please 
note that the Match Vector bit numbers indexing 
starts from "0". 

 The length of the path from the root of the tree to 
node x is called height(x), e.g. height(root) is zero, 
and the height of each child of the root is "one",  
and so on. 

 The longest prefix of each key derived from its 
match vector is called the ‘Max-length Prefix’ of 
that key and is shown by MP(key). The largest i 
such that key.mv(i)=1, shows that the length of 
MP(key) is i+1. 

Using these definitions, prefixes can be inserted 
into any search tree such as Binary Search Tree (BST). 
Although each prefix will be stored in form of two 
vectors called "Match Vector" and "key", the 
procedure may be simply mentioned as inserting the 
prefix instead of storing the key or Match Vector.  

The insert and search procedures for CP-BST are 
explained in the following sections. The delete 
procedure is removed due to space limitation. 
However, detailed delete procedure of CP-BT is 
included in  [24]. 

A. Insertion 
Before describing the insert procedure, the 

following lemma should be stated: 

Lemma 2- Consider a set P of prefixes which are 
inserted into a binary search tree with an arbitrary 
order and based on the comparison definition of 
section II. Consider d as an input IP address and 
assume that the objective is “to search d” in the tree. If 
pi is a member of P and also pi d, then at least one 
key q will be found in the search path of d such that 
pi q. 

Proof- It is given in the appendix. 

This lemma states the main idea of the insertion 
procedure. Since q is found in the search path and 
pi q, if the existence of prefixes of q can be 
distinguished by some additional information in the 
node which stores q, the search procedure of d will 
find all of the prefixes of d on the search path. This is 
the reason for defining the Match Vector for a key 
which was stated in the last section. Based on the 
above lemma, the insertion procedure will be as 
follows: 

To insert a "newPrefix" in the tree, or to determine 
the insertion path, the algorithm starts from the "root 
node". Visiting any node in the insertion path in which 
a key r is stored, the "newPrefix" is compared with r. 

1- If the "newPrefix" is a prefix of the Max-length 
Prefix of r, then the corresponding bit in the "match 
vector" of r will be set to one, and the algorithm will 
be continued. In other words:  

If "newPrefix"  MP(r), then r.mv(len(newPrefix)-
1)=1.  

2- The insertion procedure selects the next node to 
go through. Based on the result of comparison if 
"newPrefix"<MP(r), then the procedure goes to the 
left child of r, otherwise it goes through the right 
child.  

3- This procedure will continue till reaching a leaf 
node. Then, a right or left child will be created based 
on the above procedure and the prefix will be inserted 
into this new node. It is necessary to emphasize that 
part 1 is done only one time during the insertion 
procedure of each "newPrefix".  



This is the result of a property of CP-BST which is 
stated by lemma 3: 

Lemma 3- In the insertion process of a prefix p, 
consider the following set of inserted prefixes: 

P={pi | 1  i n, p pi} 
If P is not empty, for the insertion of p in CP-BST: 

a. The existence of at least one member of P is 
indicated in the match vectors of insertion path. 

b. It is only necessary to update the match vector 
of the first visited member of P in the insertion path of 
p. 

Proof- part ‘a’ can be proved using lemma 2. 
However, a complete proof for parts ‘a’ and ‘b’ is 
given in the Appendix. 

Lemma 3 and its proof point to an important 
property of Coded Prefix Search trees which we call 
“Master/Slave property” and it is also true for CP-
BST. According to Master/Slave property, starting 
from the root of the tree: 

For each sub-tree S of a coded prefix tree, a match 
vector bit stored in root(S) (which indicates the 
existence or nonexistence of a prefix in its sub-tree) 
overrules all of the match vector bits of sub-tree S for 
the same prefix. In other words, if p is prefix of both 
the key stored in the root of S (named “skey”) and 
another key k stored somewhere in S and len(p)=i, 
then skey.mv(i-1) indicates the existence or 
nonexistence of p in the database. This means that 
k.mv(i-1) will be overruled by skey.mv(i-1).   

 For an example of insertion procedure with w=7, 
consider the following prefixes: 

p1=010000*, p2=0100011, p3=01000*, p4=0100*, 
p5=010* and p6=00* 

Also consider that they will be inserted into the 
tree with the following order: p1, p3, p4, p5, p6, p2 

Based on the result of the insertion process in 
Fig.1, although p4 is a prefix of p3 (01000* in node B), 
since it already has set one match vector bit once 
during its insertion (in node A of Fig.1), it does not 
update the match vector of p3 (Node B) and the same 
procedure is done for inserting p5 and p6. 

As an example of the Master/Slave property, look 
at the pairs of match vector and key in nodes A 
(0011110,0100000) and B (0000100,0100000) of 
Fig.1. The match vector and key pair of node A, tells 
us that 010*,0100*, 01000* and 010000* exist in the 
database. However, the same pair (mv=0000100, 
key=0100000) in node B only indicates that 01000*, 
the Max-length prefix of key=0100000, exists in the 
database. Since A is the Master and B is the Slave, the 
information of A overrules the information of B in a 
search procedure which reads the information of both 
nodes. It means that 010*, 0100*, 01000* and 
010000* exist in the database.  

It is worth mentioning that one of the major 
differences between this algorithm and Trie based 
algorithms is the worst case height of the tree. Most of 
the Tries have the worst case height of O(w) where w 
is the IP address length. But the worst case tree height 

of this algorithm completely depends on the number of 
prefixes n and the type of tree used. As shown in the 
next sections, using some types of balanced trees 
causes the worst case tree height to become O(log(n)) 
which is a good result since it makes the tree height 
independent from the IP address length while making 
the algorithm capable of doing incremental updates. 

B. Search Procedure 
Based on the insertion procedure and lemma 2 

which were stated in the previous section, the search 
procedure for CP-BST is as follows: 

A simple search algorithm is done to search the 
LMP of a given address d. First of all, a match vector 
d.mv will be considered for d (without loss of 
generality, this vector may be considered as all “x” 
bits). Then, starting from the root, d will be compared 
with m=MP(root node key) and its prefixes. If any 
prefix of m (including m itself) is also a prefix of d, 
then its corresponding bit in the match vector of m (0 
or 1)  will update the same bit of d.mv, but only if this 
is the first time this bit is being updated. This is due to 
the fact that based on the Master/Slave property 
mentioned earlier, if any bit of d.mv has been updated 
once by ‘0’ or ‘1’ during the search procedure, it will 
not be updated again. 

Using the result of the comparison of d and the 
root node key, the search will continue through one of 
its child nodes in a similar manner.    

For an example of the search procedure in the tree 
of Fig.1, let’s assume d=0100010, then 
d.mv=’xxxxxxx’ . In the root node, the search 
procedure, finds 010*, 0100*, and 01000* as prefixes 
of d, then d.mv will be updated to xx111xx. Since 
d>0100000, the search continues to node C. Although 
the corresponding match vector bits of 010*, 0100*, 
and 01000* are equal to zero in node C, since the 
corresponding bits of d.mv are updated to ‘1’, 
according to the Master/Slave property, these bits 
should not update d.mv again. Noting that 0100011 
(the Max-length prefix stored in node C) is not a prefix 
of d, the final d.mv will be xx111xx and therefore 
LMP(d)=01000*. Note that the whole height of the 
tree should be traversed by the search procedure to 
find LMP(d). For example, if d=0100011, checking 
the Max-length prefix stored in node C, causes 
d.mv[6] to become ‘1’ and the final d.mv to become 
‘xx111x1’which means that LMP(d)=0100011. 

IV.SCALAR PREFIX SEARCH: ANOTHER VERSION 
OF CODED PREFIX SEARCH 

Look at Fig.A1 and the proof of Lemma 2. Assume 
that the prefixes are inserted into a Binary Search Tree 
with an arbitrary order. Consider d as an input IP 
address and assume that the objective is to search 
LMP(d) in the tree. If pi is a prefix stored in the tree 
and also pi d, based on the proof of Lemma 2 and 
Fig.A1, if the search path of pi is separated from the 
search path of d in a node containing a vector e.g. q, 
the relation pi q will always be true.  

Based on the above property, we introduced Coded 
Prefix Trees in the last section. Since the existence of 
pi is indicated by both match vectors of pi and q, 
key(pi) whose Max-length prefix is pi and is located in 



the left sub-tree of q in Fig.A1, can be removed from 
the tree, because its information is redundant. Scalar 
Prefix Trees are introduced based on the idea of 
removing all such redundancies and compressing the 
Coded Prefix Trees as much as possible. Removing 
these redundancies causes the prefixes of each node to 
become completely different from the other nodes i.e. 
each node key and its match vector are representatives 
of a set of prefixes that do not exist in any other node. 

The idea of scalar prefix trees is also applicable to 
many types of trees including balanced trees such as 
B-tree, RB-tree and AVL-tree by some modifications 
in their search and update procedures. However, to 
simply describe the main idea, we explain its 
application to Binary Search Tree and call it Scalar 
Prefix Binary Search Tree or SP-BST. For the details 
of its application to the B-tree (called SP-BT and SP-
BTe), the Red-Black tree (called SP-RB) and the 
AVL-tree (called SP-AVL), and also the major 
modifications in the search and update procedures of 
these trees, refer to  [25]. 

A. Insert Procedure for SP-BST 
To insert a “newPrefix”, or to determine the 

insertion path, the algorithm starts from the “root 
node”. Visiting any node in the insertion path in which 
a key r is stored and to make a decision on insertion or 
continuing on the insertion path, the “newPrefix” is 
compared with r. 

If the “newPrefix” is a prefix of the Max-length 
Prefix of r, then the corresponding bit in “match 
vector” of r would be set to one, and the algorithm 
returns. In other words:  

If “newPrefix” MP(r), then: 

                        r.mv(len(newPrefix)-1)= 1. 

 

Figure 1 Example for insertion steps into CP-BST 

But if the Max-length Prefix of r is the prefix of 
the “newPrefix”, then the corresponding bit with the 
length of len(newPrefix) in the “match vector” of r 
would be set to one and the key(newPrefix) is stored as 
r and algorithms returns or: 

If MP(r)  “newPrefix”, then: 

   r.mv(len(newPrefix)-1)=1 and r=key(newPrefix). 

Else, if MP(r) and “newPrefix” are disjoint, based 
on the result of comparison, the insertion procedure 
selects the next node to go through. If 
“newPrefix”<MP(r), then the procedure goes to the 
left child of r, or else it goes through the right child. 

This procedure will continue till it is terminated in 
a node or it reaches a leaf node but is not terminated. 
Then a right or left child will be created based on the 
procedure above and the prefix will be inserted in the 
new node. 

For an example of the insertion process, consider 
the prefixes of the example of section III.A with the 
same arriving order. Fig.2 shows the tree after the 
insertion of the above prefixes. Comparing Fig.2 with 
Fig.1, the SP-BST of the above prefixes, shows a good 
compression ratio and also a shorter tree height 
compared to Coded Prefix Trees. Details of the prefix 
deletion procedure for SP-BST are included in  [25]. 

B. Search Procedure for SP-BST 
The search procedure for the Longest Matching 

Prefix of address d is started from the root and may be 
finished in a leaf or non-leaf node.  

Consider a match vector d.mv for d. In each node n 
that is being searched, if its Max-length prefix is a 
prefix of d, then it is the Longest Matching Prefix we 
look for, and the procedure will be terminated. In other 
words, let's consider keyn as the key stored in n. If 
MP(keyn)  d, then: 

MP(keyn)= LMP(d) and the procedure will be 
terminated.  

Otherwise, if some other prefixes of keyn match 
with d, the corresponding bit in d.mv will be set to one. 

Then, if d>keyn, the procedure goes through the 
right child of n. Otherwise, it goes through its left 
child. It then repeats the procedure at the child node. 

 

Figure  2 The SP-BST for the prefixes of Figure 1 



For example, assume that the objective is to find 
LMP(d) in Figure 2 considering d=0100010. The 
search starts from the root node. Keyr=0100000 is 
stored in this node. 

Since MP(Keyr)!  d, but some other prefixes of 
Keyr match d, their corresponding bits in d.mv will be 
set to one. Therefore, d.mv=0011100. Then, since d> 
Keyr, the procedure should check the right child of the 
root node. Since in the right child node, no new 
matching prefix of d is found, the procedure will be 
terminated after checking the match vector and key of 
node C. Therefore, LMP(d)=01000* which 
corresponds to the least significant ‘one’ in d.mv.  

As another example, consider d=0100001. 
Checking the root node, MP(Keyr) d 
(010000* 0100001). Therefore, the first condition is 
met. This, guarantees that LMP(d)= 
MP(Keyr)=p1=010000*. In this case, it is not 
necessary to continue traversing the tree. 

C. Properties of Scalar Prefix Trees 

Based on the search and insert procedures and the 
above examples, SP-BST has some properties listed 
below: 

a. The Max-length prefixes of all node keys in the 
tree are disjoint. For example, in Figure 2, the disjoint 
Max-length prefixes of the nodes are 010000*, 
0100011 and 00*.  

b. In Scalar Prefix Search, any time the search for 
address d reaches a key k whose Max-length prefix is a 
prefix of d or if p=MP(k) and p d, then p will be the 
LMP(d) and therefore the search will be terminated. 
This is one advantage of Scalar Prefix Trees compared 
to Coded Prefix Trees because the search may be 
terminated in a non-leaf node. For the proof, please 
look at the Lemma 4 which is explained in the 
appendix. 

 

c. A prefix is stored in the match vector of only 
one key in the tree.  

 

d. If p is a prefix of k1, k2, k3,…, kn and j is the 
index of the key of the node with the least height 
among k1, k2, k3,…, kn, then the prefix p would be 
stored only in the match vector of kj and then: 
kj.mv(len(p)-1)=1.  

 Based on the above properties, up to w prefixes 
can be stored in a key. Therefore, if np is the number 
of prefixes and nk is the number of the node keys in 
the tree, then always nk np. The equality holds only 
when all of the prefixes are disjoint. This is also one 
advantage of Scalar Prefix Trees compared to Coded 
Prefix Trees because a key of SP-BST may contain up 
to w prefixes. Therefore, the average height of the tree 
is reduced. On the other hand, compared to range 
based algorithms, since all of w prefixes of a key can 
be stored in “one” pair of (match vector, key) and also 
our scheme does not need to store both of the end 
points of a prefix, the average storage would be 
reduced as well. Compared to Trie based solutions, it 
has the advantage of not being dependent on the IP 

address length in the number of node accesses for both 
search and update procedures. 

V. BALANCED TREE VERSIONS OF THE MAIN IDEA 
Since there is no guarantee for the height of the 

SP-BST and the CP-BST, the concept of Coded and 
Scalar Prefix Search has been applied to some 
balanced trees such as B-tree (named CP-BT, SP-BT), 
RB-tree (named CP-RB, SP-RB)  and AVL-tree 
(named CP-AVL, SP-AVL). These trees have the 
property that can guarantee and control the worst case 
height of the tree to be O(log n). Therefore, the 
complexity of the search and update procedures for 
these trees is O(log n) as well. 

VI. COMPLEXITY ANALYSIS AND COMPARISON 
RESULTS 

Since there is no guarantee for the height of the 
CP-BST or SP-BST, we focus on the balanced tree 
versions of both algorithms in finding the search, 
update and memory complexities for hardware 
implementation.  

Since the height of a CP-BT or SP-BT with the 
degree t is always less than logt(n+1)/2  [1] in which n 
is the number of prefixes, the number of node accesses 
for search, insert and delete will be O(logtn). 
Similarly, it will be O(log n) for Red-Black and AVL 
versions. 

Many linear operations like shifting operations are 
done in the update procedures in each node. These 
operations have the complexity 2t in software where t 
is the order of the B-tree. However, the complexity of 
these operations will be O(1) in hardware. Similar 
discussions can be done for the search operations. 
Therefore the algorithms have better search and update 
performances in hardware implementation. 

We implemented different versions of our 
proposed algorithms for both IP versions IPV4 and 
IPV6 in software: 

- The B-tree version of Scalar Prefix Search, SP-BT 
and Coded Prefix search, CP-BT 

- The Red-Black and AVL tree versions of “Coded 
Prefix Trees” and “Scalar Prefix Trees” named CP-
RB, CP-AVL and SP-RB,  SP-AVL.  

Additionally, two famous B-tree solutions 
PIBT  [16] and BTLPT  [17] and one Trie based 
solution LPFST  [5] were implemented in software 
using real databases for both IP versions IPV4 and 
IPV6, to compare our algorithms with other solutions. 

A. Used Databases 
To compare different solutions for IPV4 databases, 

three IPV4 prefix real databases AS4637, AS1221 and 
AS131072 have been used. The first one which 
contains 139519 prefixes was downloaded in August 
2008 from  [28] which is the main reference for IPv4 
and IPv6 real databases. The second one contains 
191566 prefixes and it was downloaded from  [28] in 
August 2008. The third one which contains 313453 
prefixes was downloaded from  [28]  in January 2010. 

Also two IPV6 databases AS1221 and AS131072 
have been used to compare different solutions for 



IPV6. The first one contains 933 prefixes which was 
downloaded from  [28]  in August 2008 and the second 
one that contains 2523 prefixes was downloaded 
from  [28] in January 2010. 

B. Software Test Setup 
To make sure that the results are independent from 

the CPU model, cache size or other restricting issues, 
all software simulations are compared based on the 
number of required node accesses for search and 
update procedures and the storage requirements. These 
parameters would also give a good indication of the 
hardware implementation efficiency and performance. 
To compute the performance parameters, test 
scenarios were repeated several times using members 
of those databases with random ordering and were 
averaged. The test method is as follows:  

First, all of the prefixes of a database were inserted 
into the structure to find the storage requirements. 
After that, each prefix was deleted and reinserted 
again. This may change the tree structure and may 
create another level of randomness. Each time the 
insertion or deletion is done, the number of node 
accesses is computed. This procedure is done several 
times for all prefixes using a random ordering of the 
prefixes. 

Each time a tree is constructed, searches are done 
using IP addresses which are constructed using 
prefixes of the databases. 

C. The Results of B-tree Schemes 
In the results presented in this paper, the minimum 

degree of the B-tree is t=14. However, similar results 
have been obtained for other degrees. Figure 3 shows 
the search (part a), update (part b) and memory (part c) 
results of CP-BT and SP-BT compared to PIBT and 
BTLPT for IPV4 databases. 

As shown in Fig 3.a, the required number of node 
accesses of the search procedure of SP-BT (or SP-
BTe) is the best for all three databases. The CP-BT has 
also comparable results. Similar update results are also 
shown in Fig 3.b. Figure 3.c shows the results of 
storage requirements of these solutions. It is clear from 
the results that although the average search 
improvement of SP-BT(SP-BTe) might be small 
compared to PIBT, the update performance has improved 
substantially. Also, while the memory storage of BTLPT is 
slightly less than our algorithms, both search and update 
performances of our algorithms have been improved a lot. 

 Please also note that the presented performances 
are for average case, In the worst case, the search 
procedure of BTLPT would degrade by a big factor 
due to its dependency on Trie-based search of its 
LPFST part. A similar situation exists for the worst 
case update procedure of both BTLPT and PIBT. 

Figure 4 shows the search, update and storage 
results for the above B-tree schemes for IPV6 
databases. Checking these figures, a similar conclusion 
can be made for IPV6. 

D. The Results of other Balanced Tree Schemes 
After extending the idea of CP-BT and SP-BT to 

Red Black and AVL Binary Balanced trees which 
were called CP-RB and CP-AVL, SP-RB and SP-AVL 

respectively, their results were compared with LPFST 
which is a binary Trie. Figures 5 and 6 show their 
search, update and memory results for IPV4 and IPV6 
prefix databases. As depicted in these figures for 
average case, although LPFST has slightly better 
storage results, the search results of SP-RB, SP-AVL, 
CP-RB and CP-AVL are better than LPFST for all 
IPV4 and IPV6 databases, and the update results of 
SP-RB are the best among them. This result is due to 
the balanced structure of these trees compared to 
LPFST. 

Again, in the worst case scenario, the performance 
of LPFST would degrade much more due to its Trie 
based architecture and possible growing of the tree 
height as a function of w. 

This dependency of the performance of LPFST to 
the Trie height and w does show itself for the IPv6 
even for the average case and small number of 
prefixes in database. 

VII. CONCLUSION 
In this paper, novel schemes called ‘Coded Prefix 

Search’ and ‘Scalar Prefix Search’ which introduce a 
coding concept for prefixes to make them numerically 
comparable were proposed. Using this concept, in 
Coded Prefix Trees, a pair of (match vector, key) is 
used to show a prefix. However, in Scalar Prefix Trees, 
this pair is the representative of at most w prefixes 
which makes the tree more compressed. Various tree 
data structures among which balanced trees are 
preferred due to their limited O(log n) height; where n 
is the number of prefixes; may be used by these 
schemes. The required operations to correctly perform 
the search and update procedures were given and 
proved. The schemes were implemented and simulated 
in software using B-tree, Red Black tree and AVL-tree, 
and the results were compared with those of current 
well-known competitive solutions which also use 
balanced trees like PIBT and BTLPT or Trie-based 
solutions like LPFST for both IPV4 and IPV6 
databases. To be independent from the software or 
hardware platforms, all simulations are compared 
based on the number of required node accesses for 
search and update procedures and the storage 
requirements. Both two proposed schemes, show 
superior results for search, update and also storage 
requirements both in average and worst case.  

Finally, the main contribution of this work is 
treating prefixes like numbers. This makes the ability 
of searching and updating prefixes without being 
depended on IP address length and also the possibility 
of fast incremental updates compared to some well-
known competitive solutions. 

 

 

 

 

 

 

 



  

 

Figure  3 The results of the B-tree schemes for IPV4 databases 

 

 

 

 

 

 
 

Figure  4 The results of the B-tree schemes for IPV6 databases 

 

 

 

 

 

 

Figure  5 The results of other balanced tree schemes for IPV4 databases 

 

 

 

 

 

 

  

Figure  6 results of other balanced tree schemes for IPV6 databases
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APPENDIX 
Lemma1- consider two prefixes p, q. If p is a prefix 

of q, then p  q. 

Proof- Since p is a prefix of q, if len(p)=lp, the first 
lp bits of p and q will be the same. Also, the "lp+1"th 

place of p will be blank space which is less than or 
equal to the "lp+1"th place of q which is 0,1 or blank 
space. Therefore, p will be less than or equal to q. 

Lemma 2- Consider a set P of prefixes which are 
inserted into a binary search tree with an arbitrary 
order. Consider d as an input IP address and assume 
that the objective is to “search d” in the tree. If pi is a 
member of P stored in the tree and also pi d, then at 
least one vector q will be found in the search path of d 
with the property of pi q. 

Proof idea- The proof uses contradiction. Consider 
that the conclusion of the lemma is not true. If pi is in 
the search path of d, then q=pi which contradicts the 
assumption. If pi is not in the search path of d, assume 
that the search path of pi is separated from the search 
path of d in a node containing a vector e.g. q (Figure 
A1). Also, the following relationships can be verified 
from Figure A1 and the assumptions of the lemma:  

pi q, q d, pi d  (1) 

pi d results in:  
pi(0:len(pi)-1)= d(0:len(pi)-1)  (2)  

Now, two states may exist: 

len(q) len(pi) and len(pi)> len(q).  

If len(q) len(pi), we can say:  

pi(0:len(pi)-1)< q(0:len(pi)-1)  (3) 

(2), (3) result in: 

d(0:len(pi)-1)< q(0:len(pi)-1) (4)  

which means d<q which contradicts (1). 

If len(pi)> len(q), the proof will be similar.  

Therefore, at least one vector q will be found in the 
search path of d with the property of pi q.                 

Lemma 3- In the insertion process of a prefix p, 
let’s consider the following set of inserted prefixes: 

P={pi | 1  i n, p pi}  

If P is not empty, then for insertion of p in CP-
BST: 

a. The existence of at least one member of P is 
indicated in the match vectors of insertion path. 

b. It is only necessary to update the match vector 
of the first visited member of P in the insertion path of 
p. 

Proof of a: 

Select a prefix pi P. p  pi results in p<pi. 
Therefore p should be inserted in the left side of pi in 
the tree. This is shown in Figure A2. 

Assume that k is the Max length prefix of the node 
key, at which the search path of p is separated from 

the search path of pi (Figure A2). Looking at Figure 
A2, it results in: 

 p<k<pi.  

We will show that in this case p k .To prove this, 
we use contradiction. Let’s assume p! k, then two 
cases may exist: 

Case a.1- len(k)<len(p)  

Case a.2- len(k) len(p),  

we check each case separately.: 

Case a.1. len(k)<len(p): 

Since p<k, and len(k)<len(p), we conclude:  
p(0:len(k)-1)<k(0:len(k)-1).  

Note that  p(0:len(k)-1) and k(0:len(k)-1) represent 
the first len(k) bits of each of  p and k . 

On the other hand, since p pi, and len(k)<len(p), 
we conclude:  

p(0:len(k)-1)=pi(0:len(k)-1)<k(0:len(k)-1).  

This results in pi<k which is a contradiction. 
 

 

Figure A1 A BST for prefixes using the concept of coded 
prefixes 

 

 

 

 

 

 

 

Figure  A2 The places of p and pi in the tree 
 

Case a.2. len(k) len(p):  

This case results in: 

p(0:len(p)-1)<k(0:len(p)-1).  

On the other hand, since p pi, it is clear that: 

p(0:len(p)-1)=pi(0:len(p)-1)<k(0:len(p)-1).  



This will lead to pi<k which is also a contradiction 
with Figure A2. 

As these two cases contradict the assumptions, it 
can be concluded that p k which means k  P. 
Therefore, at least one of the members of P is 
traversed along the insertion search path of p. 

Proof of b: 

 Again we will prove it using contradiction. 
Consider the following definition for key(k): 

“key(k)” is the first stored key in the search path 
for insertion of p with the property of p k where k is 
MP(key(k)). 

Since p k then previous definitions and lemmas 
result in: 

(1) k(0:len(p)-1)=p(0:len(p)-1) 

(2) key(p)   key(k) 

Assume that part b of the lemma is not true. It 
means that it is not sufficient to only update the match 
vector of key(k) in the search path for insertion of p.  

As a result of this assumption, if only the match 
vector of key(k) is updated in the update procedure of 
p, there should be at least one LPM search procedure 
that will not find p for an arbitrary address d for which 
p d.  

(3) Since p d, it results in  keyp d, 

Now, consider the following definition for keyj: 

keyj is the first key in the search path of d with the 
property of p j (or p (MP(keyj)=j)),  

Now, two cases may occur: 

Case b.1: keyj exists 

Case b.2: keyj does not exist. 

Let’s consider case b.1. Based on the existence of 
keyj: 

(4) Since p j then, j(0:len(p)-1)=p(0:len(p)-1) 

(5) Keyp   keyj  

It is also shown in Figure A3 

Since based on the assumption the search 
procedure should not find p, then: 

(6) keyj.mv(len(p)-1)=0 

This means that the insertion path of p is separated 
from the search path of d in a node e.g. "n" storing a 
key e.g. keys whose Max length prefix is "s". Now two 
cases may occur,  

Case b.1.1: d<keys   

Case b.1.2: keys d (Figure A3). 

Let’s consider Case b.1.1 where we have: 

i. d<keys 

Also since keys is the separation point, then: 

ii. keys<key(p)  

( i), ( ii) result in d<key(p) which contradicts  (3). 

Now, consider Case b.1.2: keys d,  

Note that using the assumption that we could not 
find p during the search of d and the definition of keyk 
and keyj,, neither of them should be seen in the search 
path until reaching keys. Because if either of them is 
seen before reaching keys, this means that these two 
keys are the same and the search of d will find p in its 
path which is a contradiction. This also means keys  
keyj. 

Again, since keys is the separation point and also 
d  keys, we conclude keys  keyj. 

Using keys  keyj results in: 

iii. keys< keyj .  

Since keyk should select a separate path: 

iv. keyk< keys .  

( iii) and ( iv) are shown in Figure A3. 

( iii), ( iv) and  (2) result in: 

v. keyp< keys < keyj 

Now, two cases may occur: 

either len(s)<len(p) or len(s) len(p) . 

Consider the first case: len(s)<len(p). In this case: 

I. p(0:len(s)-1)<s(0:len(s)-1) 

Based on this and since p j, we can conclude: 
II. j(0:len(s)-1)<s(0:len(s)-1) 

This means that keyj<keys and this contradicts ( v). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A3 Proof of lemma 2 

 
 

The second case: len(s) len(p), results in: 
III. p(0:len(p)-1)<s(0:len(p)-1) 



Then, p j and  III result in: 

IV. j(0:len(p)-1)<s(0:len(p)-1) 

This means: keyj<keys which contradicts ( v).  

For the case b.2, when in the search path of d in 
Figure A3 no keyj such that p MP(keyj) is found, 
again let’s consider node n and its key named keys as 
the separation point. Similar to case b.1: 

(7) keyp<keys<d  

Again two cases may exist:  

Case b.2.1: len(p) len(s)  

Case b.2.2: len(p)>len(s) 

Case b.2.1 results in:  

vi. p(0:len(p)-1)<s(0:len(p)-1).  

Therefore: 

vii. d(0:len(p)-1)<s(0:len(p)-1) which 

contradicts  (7).  

Case b.2.2 results in: 

viii. p(0:len(s)-1)<s(0:len(s)-1). 

Therefore: 

ix. d(0:len(s)-1)<s(0:len(s)-1)  

Therefore: 

x. d<keys which again contradicts  (7).  

Therefore, at least one keyj is found such that 
p MP(keyj) in the search path of d. 

This proof guarantees that it is only needed to 
update keyk.mv(len(p)-1) to '1' at the time of insertion. 

Lemma 4- In Scalar Prefix Search, any time the 
search for address d reaches a key k whose Max-length 
prefix is a prefix of d or if p=MP(k) and p d, then p 
will be the LMP(d), and therefore the search will be 
terminated. 

Proof idea- The proof is done using contradiction. 
Assume that MP(k) d and the search is not 
terminated in the node containing k. If the search 
procedure finds another prefix p' and p' d, p p', 
then these relations show that p' is a prefix whose 
existence is indicated in the match vector of a key k’ 
and we have: 

MP(k) MP(k') or p k'. 

Based on the properties of Scalar Prefix Trees 
mentioned in section 4.3, the Max-length prefixes of 
all of the keys must be disjoint. Therefore, the above 
relations contradict this property, and the search 
procedure is terminated in the node containing k. 
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